CO2 puts heavier stamp on temperature than thought
45-year-old drill core
The researchers used a 45-year-old drill core extracted from the bottom of the Pacific Ocean. “I realized that this core is very attractive for researchers, because the ocean floor at that spot has had oxygen-free conditions for many millions of years,” said Professor Jaap Sinninghe Damsté, senior scientist at NIOZ and professor of organic geochemistry at Utrecht University. “As a result, organic matter is not broken down as quickly by microbes and more carbon is preserved,” Damsté said. He was also the supervisor of Witkowski, whose doctorate thesis included this research.
Unique time series
“CO2 over the past 15 million years has never before been examined from a single location,” Witkowski said. The upper thousand meters of the drill core correspond to the past 18 million years. From this record, the researchers were able to extract an indication of the past seawater temperature and an indiction of ancient atmospheric CO2 levels, using a new approach.
Derived temperature
The researchers derived the temperature using a method developed 20 years ago at NIOZ, called the TEX86 method. “That method uses specific substances that are present in the membrane of archaea, a distinct class of microorganisms,” Damsté explains. “Those archaea optimize the chemical composition of their membrane depending on the temperature of the water in the upper 200 meters of the ocean. Substances from that membrane can be found as molecular fossils in the ocean sediments, and analyzed to this day.”
CO2 from chlorophyll and cholesterol
The researchers developed a new approach to derive atmospheric CO2 content by using the chemical composition of two specific substances commonly found in algae: chlorophyll and cholesterol. This is the first study to use cholesterol for quantitative CO2 and the first study to use chlorophyll for this time period. To create these substances, algae must absorb CO2 from the water and fix it via photosynthesis.
Damsté: “A very small fraction of the carbon on Earth occurs in a 'heavy form,' 13C instead of the usual 12C. Algae have a clear preference for 12C. However: the lower the CO2 concentration in the water, the more algae will also use the rare 13C. Thus, the 13C content of these two substances is a measure of the CO2 content of the ocean water. And that in turn, according to solubility laws, correlates with the CO2 content of the atmosphere.”
Using this new method, it appears that the CO2 concentration dropped from about 650 parts per million, 15 million years back, to 280 just before the industrial revolution.
Stronger relationship
When the researchers plot the derived temperature and atmospheric CO2 levels of the past 15 million years against each other, they find a strong relationship. The average temperature 15 million years back was over 18 degrees: 4 degrees warmer than today and about the level that the UN climate panel, IPCC, predicts for the year 2100 in the most extreme scenario. “So, this research gives us a glimpse of what the future could hold if we take too few measures to reduce CO2 emissions and also implement few technological innovations to offset emissions,” Damsté said. “The clear warning from this research is: CO2 concentration is likely to have a stronger impact on temperature than we are currently taking into account!”
CO2 drukt zwaarder stempel op temperatuur dan gedacht
Een verdubbeling van de hoeveelheid CO2 in de atmosfeer zou een verhoging van de gemiddelde temperatuur op aarde kunnen veroorzaken van 7 tot maximaal 14 graden. Dat blijkt uit de analyse van bodemmateriaal uit de Stille Oceaan voor de kust van Californië, door onderzoekers van NIOZ en de Universiteiten van Utrecht en Bristol. De resultaten zijn deze week gepubliceerd in Nature Communications. “De gevonden stijging van de temperatuur is veel groter dan de 2,3 tot 4,5 graden waar het klimaatpanel van de VN, het IPCC, tot nu toe mee rekent”, zegt de eerste auteur van het artikel, Caitlyn Witkowski.
45 jaar oude boorkern
De onderzoekers maakten gebruik van een boorkern die al 45 jaar geleden uit de bodem van de Stille Oceaan werd gehaald. “Die kern is heel aantrekkelijk, omdat de oceaanbodem daar al vele miljoenen jaren zuurstofloze condities kent”, zegt professor Jaap Sinninghe Damsté, wetenschapper aan het NIOZ en tevens hoogleraar organische geochemie aan de Universiteit Utrecht. “Daardoor worden organische stoffen niet zo snel afgebroken door microben en blijft er meer koolstof bewaard”, aldus Damsté. Hij was ook de promotor van Witkowski, die onder andere op dit onderzoek is gepromoveerd.
Unieke tijdreeks
“Nog niet eerder is het verloop in CO2 op één locatie van de afgelopen 15 miljoen jaar onderzocht”, zegt Witkowski. De bovenste duizend meter van de boorkern correspondeert met de afgelopen 18 miljoen jaar. De onderzoekers hebben daar zowel aanwijzingen voor de zeewatertemperatuur als een dubbele aanwijzing voor het CO2-gehalte in de atmosfeer uit weten te halen.
Afgeleide temperatuur
De temperatuur hebben de onderzoekers afgeleid met behulp van een methode die 20 jaar geleden is ontwikkeld aan het NIOZ, de zogeheten TEX86-methode. “Die methode maakt gebruik van specifieke stoffen uit de membraan van archaea, een aparte klasse van micro-organismen”, vertelt Damsté. “Die archaea optimaliseren de chemische samenstelling van hun membraan, afhankelijk van de temperatuur van het water in de bovenste 200 meter van de oceaan. De stoffen uit die membraan zijn tot op de dag van vandaag als fossielen terug te vinden in de oceaanbodem en te analyseren.”
CO2 uit bladgroen en cholesterol
De onderzoekers ontwikkelden een nieuwe methode om het CO2-gehalte uit het verleden af te leiden uit de chemische samenstelling van twee specifieke stoffen die veel in algen zitten: het bladgroen, of chlorofyl, en cholesterol. Dit is het eerste onderzoek ooit waarbij cholesterol is gebruikt om CO2 te kwantificeren en het eerste onderzoek waarbij chlorofyl is gebruikt om deze tijdsperiode te onderzoeken. Om deze stoffen te maken moeten algen CO2 uit het water opnemen en vastleggen via fotosynthese. Damsté: “Een heel klein deel van de koolstof op aarde komt voor in een ‘zware vorm’, 13-C in plaats van de gebruikelijke 12-C. Algen hebben een duidelijke voorkeur voor 12-C. Alleen: hoe lager de CO2 concentratie in het water, hoe meer algen ook dat bijzondere 13-C gaan gebruiken. Op die manier is het 13-C-gehalte van deze twee stoffen een maat voor het CO2 gehalte van het oceaanwater. En dat hangt volgens de oplosbaarheids wetten weer samen met het CO2-gehalte van de atmosfeer.”
Uit het gebruik van deze nieuwe methode blijkt dat de CO2 concentratie van ongeveer 650 deeltjes per miljoen gedaald, 15 miljoen jaar terug, naar 280 vlak voor de industriële revolutie.
Sterkere relatie
Wanneer de onderzoekers de afgeleide temperatuur en de CO2-gehalten van de atmosfeer van de afgelopen 15 miljoen jaar tegen elkaar uitzetten, komen ze tot een behoorlijk sterke relatie. De gemiddelde temperatuur was 15 miljoen jaar terug ruim 18 graden: 4 graden warmer dan nu en ongeveer het niveau dat het klimaatpanel van de VN, het IPCC voorspelt voor het jaar 2100 in het meest extreme scenario. “Dit onderzoek geeft ons dus een blik op wat de toekomst zou kunnen brengen, wanneer we te weinig maatregelen nemen om de CO2-uitstoot terug te dringen en we ook weinig technologische innovaties zullen toepassen om de uitstoot te compenseren”, aldus Damsté. “De duidelijke waarschuwing uit dit onderzoek is: de CO2 concentratie heeft waarschijnlijk een sterkere invloed op de temperatuur dan waar we nu rekening mee houden!”
The paper 'Continuous sterane and phytane δ13C record reveals a substantial pCO2 decline since the mid-Miocene' was published in Nature Communications on 18 June 2024.
doi: 10.1038/s41467-024-47676-9
De Nederlandse vertaling van dit persbericht vind u onderaan deze pagina