Marine biologist Sabine Gollner investigates the various types of life in the deep sea. ‘Half of the earth's surface consists of seas deeper than 200 metres. However, the deep seafloor is definitely not uniform. There are hot springs, wide plains with potato-shaped polymetallic nodules, mountain chains and trenches and coral reefs. Just like on land, there is a lot of variation in the deep-sea landscape. And the deep-sea landscape is also under threat from (future) economic exploitation.’
‘We know very little about life in the deep sea. One part of my research focusses on abyssal plains with “polymetallic nodules. Various countries are interested in the extraction of metals, such as cobalt, that are found in these nodules on the ocean floor. However, we still know very little about which forms of life live on and around the nodules, let alone how much damage would be caused if nodules are removed. I am investigating for example whether the same life-forms can be found on artificial nodules made from clay and on the polymetallic nodules. That could theoretically provide the possibility of offering deep-sea life an alternative should the polymetallic nodules be harvested.’
‘Also around hot springs, where extremely hot and metal-rich water of one hundred degrees Celsius or more is expelled from the ocean floor, the most exotic life-forms, as well as valuable minerals and metals, can be found. However, before one could possibly use those for the Blue Economy, we first need to get to know the life around those sources. For example, how do the various animals move from one isolated source to the next, many kilometres away?’
‘Through my work, I hope to contribute to the drawing up of a future international code of conduct for deep-sea mining. Various countries are currently working on such a code within the International Seabed Authority.’
Read more +My research interests include the ecology of deep-sea communities and how communities are shaped by extrinsic controls and biological interactions over time. I investigate deep-sea faunal biogeography and biodiversity and explore the influence of productivity, stress and disturbance on diversity. To understand community response patterns to disturbance events, I apply multi-disciplinary approaches, combing classical taxonomical and genetic methods, and linking biotic and abiotic data. We collect data through deep ocean expeditions, using for example remotely operated vehicles and other types of advanced technologies. Most of my work has focused on deep-sea hydrothermal vents. This research has taken on special relevance in the light of our increasing demand for mineral resources. Extraction of minerals at hydrothermal vents and at other deep-sea ecosystems may be imminent. Scientific data are strongly needed to help for example elaborating spatial management and environmental impact assessment protocols in the context of deep-sea mineral mining.
Curriculum Vitae Dr. Sabine Gollner
(19) Gollner S , Kaiser S , Menzel L , Jones DOB , van Oevelen D, Menot L, Colaço AM, Brown A, Canals M, Cuvelier D, Durden JM, Gebruk A, Aruoriwo EG, Haeckel M, Mestre NC, Mevenkamp L, Morato T, Pham CK, Purser A, Sanchez-Vidal A, Vanreusel A, Vink A, Martinez Arbizu P (in press) Resilience of benthic deep-sea fauna to mineral mining activities. Marine Environmental Research. http://dx.doi.org/10.1016/j.marenvres.2017.04.010
(18) Gollner S, Stuckas H, Kihara TC, Laurent S, Kodami S, Martinez Arbizu P (2016) Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PLoS ONE 11 (10): e0163776
(17) Durden JM, Billett DSM, Brown A, Dale A, Goulding L, Gollner S, Murphy K,
Pape E, Purser A, Rolin J-F, Smith A, Stewart I, Turner PJ, de
Wachter T, Weaver P, van Dover CL, Verlaan P, Jones DOB (2016) Report on the
MIDAS workshop on environmental management of deep-sea mining. Research
Ideas and Outcomes DOI: 10 3897/rio 2 e10292
(16) Gollner S, Govenar B, Martinez Arbizu P, Mills S, Nadine Le Bris, Weinbauer M, Shank T, Bright M (2015) Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption. Deep Sea Research I 106:167-182 DOI: 10 1016/j dsr 2015 10 008
(15) Klose J, Polz MF, Wagner M, Schimak M, Gollner S, Bright M (2015) Endosymbionts escape dead hydrothermal vent tubeworms to enrich the free-living population. PNAS DOI: 10 1073/pnas 1501160112
(14) Gollner S, Govenar B, Fisher CR, Bright M (2015) Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna. Marine Ecology Progress Series 520: 57-66
(13) Plum C, Gollner S, Martinez Arbizu P, Bright M (2015) Diversity and composition of the copepod communities associated with megafauna around a cold seep in the Gulf of Mexico with remarks on species biogeography. Marine Biodiversity DOI: 10 1007/s12526-014-0310-8
(12) Gollner S, Miljutina M, Bright M (2013) Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species Organisms Diversity & Evolution DOI:10 1007/s13127-012-0122-2
(11) Degen R, Riavitz L, Gollner S, Vanreusel A, Plum C, Bright M (2012) Community study of tubeworm associated epizooic meiobenthos from deep-sea cold seeps and hot vents. Marine Ecology Progress Series 468:135–148
(10) Gollner S, Fontaneto D, Martínez Arbizu P (2011) Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridge. Marine Biology 158:221-231 DOI: 10 1007/s00227-010-1553-y
(9) Gollner S, Riemer B, Martínez Arbizu P, Le Bris N, Bright M (2010) Diversity of Meiofauna from the 9°50’N East Pacific Rise across a gradient of hydrothermal fluid emissions. PLoS ONE 5(8): e12321 doi:10 1371/journal pone 0012321
(8) Gollner S, Ivanenko VN, Martínez Arbizu, Bright M (2010) Advances in taxonomy, ecology, and biogeography of Dirivultidae (Copepoda) associated with chemosynthetic environments in the deep sea. PLoS ONE 5(8): e9801 DOI:10 1371/journal pone 0009801
(7) Vanreusel A, De Groote A, Gollner S, Bright M (2010) Ecology and biogeography of free-Living nematodes associated with chemosynthetic environments in the deep sea: A Review. PLoS ONE 5(8): e12449 DOI:10 1371/journal pone 0012449
(6) Bright M, Plum C, Riavitz LA, Nikolov N, Martinez Arbizu P, Cordes EE, Gollner S (2010) Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico. Deep-Sea Research II DOI:10 1016/j dsr2 2010 05 003
(5) Gollner S, Ivanenko VN, Martínez Arbizu P (2008) A new species of deep-sea Tegastidae (Crustacea: Copepoda: Harpacticoida) from 9°50´N on the East Pacific Rise, with remarks on its ecology. Zootaxa 1866:323-336
(4) Gollner S, Zekely J, Govenar B, Nemeschkal HL, Le Bris N, Fisher CR, Bright M (2007) Tubeworm-associated permanent meiobenthic communities from two chemically different hydrothermal vent sites on the East Pacific Rise. Marine Ecology Progress Series 337:39-49
(3) Gollner S, Zekely J, Van Dover CL, Govenar B, Le Bris N, Nemeschkal HL, Bright M (2006) Benthic copepod communities associated with tubeworm and mussel aggregations on the East Pacific Rise. Cahiers de Biologie Marine 47:397-402
(2) Zekely J, Gollner S, Van Dover CL, Govenar B, Le Bris N, Bright M (2006) The nematode community and trophic structure of three macrofaunal aggregations at 9° & 11°N East Pacific Rise. Cahiers de Biologie Marine 47:477-482
(1) Govenar B, Le Bris N, Gollner S, Glanville J, Aphergis A, Hourdez S, Fisher CR (2005): Epifaunal community structure associated with Riftia pachyptila aggregations in chemically different hydrothermal vent habitats. Marine Ecology Progress Series 305:67-77