Furu Mienis studies the carbon budget in the deep sea. ‘That budget is an important part of the current climate issue. I am studying several of the 6000 or so deep gorges or so-called submarine canyons found worldwide, such as the Whittard canyon off the coast of Ireland. These canyons which are similar in size as canyons on land like the Grand Canyon, are literally the ocean’s drains, connecting the shallow productive shelf areas with the food-deprived deep sea. Especially after heavy storms but also after the large-scale fishing on the continental slopes, a lot of material disappears via these canyons into the deep sea. Due to the turbulence in and around the deep gorges that cut across the slopes, material is deposited at the deepest point: the canyon floors.’
Part of the material that disappears into the deep sea via canyons literally consists of waste, such as plastics. However, I mainly examine the organic material, which predominantly consists of dead plankton. When plankton dies, they slowly sink to the bottom. Canyon processes can speed up this process resulting in a lot more carbon disappearing into the deep sea. If that organic material in the deep sea is subsequently buried it is removed from the carbon cycle, being a valuable part in the carbon budget. However, the high amounts of organic matter also form an important food source for fauna, which makes these canyon systems ecosystem hotspots in the deep sea.
‘Some of the organic material that disappears into the deep sea is re-used as food by other forms of life, such as deep-sea corals. These corals do not rely like their tropical counterparts on algal symbionts, but actively capture food particles from the water column with their tentacles. These deep-sea coral reefs are hotspots of biodiversity and biomass and provide important habitat for a lot of life, which is still partly unknown at present!’
‘Oceans are by far the largest reservoir of free carbon. The balance between carbon in the oceans, which is once again taken up in corals and other life, and carbon that is permanently removed from the cycle is, therefore, an extremely important part of the problem concerning CO2 emission and climate change.’
My research fits at the interplay between sedimentology, ecology and physical oceanography. It focuses on understanding environmental conditions and dynamics that influence the functioning of often vulnerable ecosystems in the deep sea (e.g. cold-water coral reefs, sponge grounds, canyons). I mainly focus on the identification of transport and (food) particle supply mechanisms to the deep-sea. Using benthic observatories I measure vertical and lateral particle supply and transport in the benthic boundary layer near deep-sea ecosystems. Subsequently, the knowledge of recent conditions is applied to reconstruct environmental conditions in the past using sediment cores.
Continental shelf seas represent a small fraction of the ocean’s surface area (<10%), but as they connect the land to the open ocean, they are disproportionally important in global carbon and nutrient cycles. The North Sea is a very productive coastal sea and a lot of carbon dioxide (CO2) is taken up and buried through physical, biological, and sedimentological processes, however the long‐term fate of this carbon is largely unknown. In the NoSE project, a multidisciplinary consortium will determine the past, present, and future role of the North Sea in the uptake of carbon, by constraing the exchange of carbon and other essential nutrients between the North Sea and the Atlantic Ocean. More info at https://www.nioz.nl/en/research/projects/4622-1
Especially in a fast changing world it is crucially important to understand transport, sequestration and remineralisation processes, as these underlay carbon fluxes between surface and deep ocean and hence potentially have both positive and negative feedbacks on climate change. Multiple studies indicate that lateral transport actually plays a dominant role in organic matter fluxes from continental margins to the deep ocean. A large part of this lateral transport is likely funneled in submarine canyons, which provide effective connections between productive shelf waters and the nutrient-poor deep-sea. BYPASS? will determine the processes that influence particle transport, dispersal and retention in submarine canyons and assess the role of deep-sea fauna in remineralisation processes. These so far unquantified pathways will be constrained to provide crucial boundary conditions for Earth System Models, and hence better prediction of future climate change.
The objective of SponGES is to develop an integrated ecosystem-based approach to preserve and sustainably use vulnerable sponge ecosystems of the North Atlantic. The SponGES consortium, an international and interdisciplinary collaboration of research institutions, environmental non-governmental and intergovernmental organizations, will focus on one of the most diverse, ecologically and biologically important and vulnerable marine ecosystems of the deep-sea - sponge grounds – that to date have received very little research and conservation attention. North Atlantic deep-sea sponge grounds will be mapped and characterized, and a geographical information system on sponge grounds will be developed to determine drivers of past and present distribution. Diversity, biogeographic and connectivity patterns will be investigated through a genomic approach. Function of sponge ecosystems and the goods and services they provide, e.g. in habitat provision, bentho-pelagic coupling and biogeochemical cycling will be identified and quantified. SponGES will develop an adaptive ecosystem-based management plan that enables conservation and good governance of these marine resources on regional and international levels. More information about the project can be found at http://www.deepseasponges.org
2015- 2020 Tenure track scientist Royal NIOZ
2012-2015 Postdoctoral Researcher Royal NIOZ
VENI-NWO - Cold-water coral ecosystems: carbon sinks in the deep sea and BOEM canyons project - Pathways to the abyss
Member of the executive organising committee of the 5th International Symposium on Deep-Sea Corals (ISDSC 5), which was held 1-6 April 2012, Amsterdam and guest editor Deep Sea Research II Special issue "Cold Corals" (Proceedings of ISDSC 5)
2010-2012 Post-doc at MARUM, Bremen University (research fellowship)
2008-2010: Post-doctoral researcher (NIOZ), Project MiCROSYSTEMS, Microbial Diversity and Functionality in Cold-Water Coral Reef Ecosystems
2003-2008: PhD-student (NIOZ/VU) MOUNDFORCE project, Environmental Constraints on Cold-water Coral Growth and Carbonate Mound Formation.
1998-2003: Study geology (M.Sc.) at the VU University (Vrije Universiteit) Amsterdam - with specialisation in sedimentology and environmental analysis.
Cold-Water Coral Reefs of the World. Coral Reefs of the World, 19. Springer: [s.l.]. https://dx.doi.org/10.1007/978-3-031-40897-7