The New Great Game

Securing Critical Materials today for a cleaner energy system tomorrow

The perfect storm: two key drivers to demand

Climate change

Geopolitics

From fossil to renewable energy production

Less is More

Technologies that emit less GHGs require more critical minerals

[■] Copper ■ Nickel ■ Manganese ■ Cobalt ■ Chromium ■ Molybdenum ■ Zinc ■ Rare earths ■ Silicon ■ Others

Critical Materials and Strategic Materials

China's dominance in the CRM supply chain

China Europe United States Japan Korea DRC Australia Indonesia Russia Other

Electrifying the EU's fleet requires a lot of material

EU EV sales need to ramp up to meet Paris Climate Agreement Targets

Cathode Chemistry determines which materials will be in high demand

NMC batteries projected to remain dominant

■ LCO ■ NCA ■ NCM ■ LMO ■ LMNO ■ LFP ■ Other

Which Battery Materials will be in high demand?

Nickel Demand³ 5,000,000 4,500,000 3,500,000 3,000,000

2,500,000

2,000,000 1,500,000

1,000,000

500,000

0

Battery Non-battery

2030

2020

Material found in CCZ deep sea nodules

Mining takes time, patience and good fortune

Example of a life cycle for a mining project. Sources: Crux Investor and MRG Intelligence 2021

Road to material production in years

Years

Lithium market balance

- Supply / demand mismatch even in demand base case
- Larger part of supply will need to come from greenfield projects
- Greenfield projects = high risk of delays or failure

Sources: 1: BMI 2: Statista, 3: BMI. All data as of 2022

HP Manganese Sulfate market balance

Market deficit projected in five years

Cobalt Market Supply / Demand Balance (in MT of cobalt contained)

All the metals required for leading battery chemistries are found in high concentrations in nodules

	Polymetallic CCZ Nodules (Kg Metal Contained in 4 Tonnes Dry Nodules)	NMC 811 Battery + Cu Connectors (Kg Metal Required for 1 EV)
Nickel	52 kg (1.3%)	56.2 kg
Cobalt	7.2 kg (0.18%)	7.05 kg
Manganese	1,168 kg (29.2%)	6.6 kg
Copper	43 kg (1.08%)	35 kg (battery) + 50 kg (electric harness)

Typically seabed nodules have high(er) concentrations of nickel, manganese, cobalt and copper

• Higher concentration + reserves size \rightarrow meeting global electrification demand \rightarrow CoP21 targets

- Higher concentrations \rightarrow potential for less waste material \rightarrow better environmental footprint than onshore
- Onshore, grades are lower \rightarrow it's becoming tougher to find high grade assets in nickel, copper

Some Life Cycle Assessments show that seabed mining improve the ESG track record of NMC material

Environmental, social and economic impacts

	Cradle-to-gate production of nickel sulfate, manganese sulfate, cobalt sulfate and copper cathode Serving size 1 billion electric cars			
	Land	Nodules	% change	
Climate change				
GWP - CO2 equivalent emissions, Gt	1.5	0.4	-70%	
Stored carbon at risk, Gt	9.3	0.6	-94 %	
Nonliving resources				
Ore use, Gt	25	6	-75%	
Land use, km ²	156,000	9,800	-94%	
Incl. Forest use, km ²	66,000	5,200	-92%	
Seabed use, km ²	2,000*	508,000	+99.6%	
Water use, km ³	45	5	-89%	
Primary and secondary energy extracted, PJ	24,500	25,300	+3%	
Waste streams				
Solid waste, Gt	64	0	-100%	
Terrestrial ecotoxicity, 1,4-DCB equivalent Mt	33	0.5	-98%	
Freshwater ecotoxicity, 1,4-DCB equivalent Gt	21	0.1	-99%	
Eutrophication potential, PO4 equivalent Mt	80	0.6	- 99 %	
Human & wildlife health				
Human toxicity, 1,4-DCB equivalent Mt	37,000	286	-99%	
SOx and NOx emissions, Mt	180	18	-90%	
Human lives at risk, number	1,800	47	-97%	
Megafauna wildlife at risk, trillion organisms	47	3	-93%	
Biomass at risk, Mt	568	42	-93%	
Biodiversity loss risk	Present	Present		
Economic impact				
Nickel sulfate production cost, USD per tonne Ni	14,500	7,700	-47%	
Jobs created (non-artisanal), worker-years	600,000	150,000	-75%	

Although long term impacts need to be monitored, we do know that collecting seabed nodules:

- does not required displacement of communities
- Leaves less tailings to be managed
- Offers mining jobs for local communities without the direct exposure to some of the hazards common in onshore mining

LCA whitepaper 'Where should metals for the Green Transition come from?' Daina Paulikas and others, April 2020

- The Clarion-Clipperton Fraction Zone (CCZ) offers an interesting test case
 - Is independent international governance possible?
 - What is the impact of exploration and exploitation on sea(bed) life?
 - ESG vs geopolitics: who has FOMO?

How scalable is deep sea mining?

Thank you

You can reach out to Jeff Amrish Ritoe

linkedin.com/in/amrish-ritoe

@RitoeJA